Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures.

نویسندگان

  • K L Thomas-Keprta
  • S J Clemett
  • D A Bazylinski
  • J L Kirschvink
  • D S McKay
  • S J Wentworth
  • H Vali
  • E K Gibson
  • M F McKay
  • C S Romanek
چکیده

McKay et al. [(1996) Science 273, 924-930] suggested that carbonate globules in the meteorite ALH84001 contained the fossil remains of Martian microbes. We have characterized a subpopulation of magnetite (Fe(3)O(4)) crystals present in abundance within the Fe-rich rims of these carbonate globules. We find these Martian magnetites to be both chemically and physically identical to terrestrial, biogenically precipitated, intracellular magnetites produced by magnetotactic bacteria strain MV-1. Specifically, both magnetite populations are single-domain and chemically pure, and exhibit a unique crystal habit we describe as truncated hexa-octahedral. There are no known reports of inorganic processes to explain the observation of truncated hexa-octahedral magnetites in a terrestrial sample. In bacteria strain MV-1 their presence is therefore likely a product of Natural Selection. Unless there is an unknown and unexplained inorganic process on Mars that is conspicuously absent on the Earth and forms truncated hexa-octahedral magnetites, we suggest that these magnetite crystals in the Martian meteorite ALH84001 were likely produced by a biogenic process. As such, these crystals are interpreted as Martian magnetofossils and constitute evidence of the oldest life yet found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic tests for magnetosome chains in Martian meteorite ALH84001.

Transmission electron microscopy studies have been used to argue that magnetite crystals in carbonate from Martian meteorite ALH84001 have a composition and morphology indistinguishable from that of magnetotactic bacteria. It has even been claimed from scanning electron microscopy imaging that some ALH84001 magnetite crystals are aligned in chains. Alignment of magnetosomes in chains is perhaps...

متن کامل

Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils.

Using transmission electron microscopy (TEM), we have analyzed magnetite (Fe3O4) crystals acid-extracted from carbonate globules in Martian meteorite ALH84001. We studied 594 magnetites from ALH84001 and grouped them into three populations on the basis of morphology: 389 were irregularly shaped, 164 were elongated prisms, and 41 were whisker-like. As a possible terrestrial analog for the ALH840...

متن کامل

Thermal Decomposition of an Impure (roxbury) Siderite: Relevance to the Presence of Chemically Pure Magnetite Crystals in Alh84001 Carbonate Disks

Background and Introduction: The question of the origin of nanophase magnetite in Martian meteorite ALH84001 has been widely debated for nearly a decade. Golden et al. [1] have reported producing nearly chemically pure magnetite from thermal decomposition of chemically impure siderite [(Fe, Mg, Mn)CO3]. This claim is significant for three reasons: first, it has been argued that chemically pure ...

متن کامل

Thermal Decomposition of Siderite–pyrite Assemblages: Implications for Sulfide Mineralogy in Martian Meteorite Alh84001 Carbonate Globules:

Introduction: Although magnetite crystals in ALH84001 have received considerable attention in the literature as a potential biomarker, the sulfide component is important because the coexistence of magnetite and sulfides has also been suggested as a marker for past biogenic activity [1]. Very little research, however, has focused on the formation of sulfides in ALH84001. Early research on the su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 5  شماره 

صفحات  -

تاریخ انتشار 2001